3.2.26 \(\int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [126]

Optimal. Leaf size=203 \[ \frac {5 \sqrt {a} (7 A+8 B) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {5 a (7 A+8 B) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {5 a (7 A+8 B) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (7 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

5/64*(7*A+8*B)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+5/64*a*(7*A+8*B)*sin(d*x+c)/d/(a+a*
sec(d*x+c))^(1/2)+5/96*a*(7*A+8*B)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/24*a*(7*A+8*B)*cos(d*x+c)^
2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/4*a*A*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 203, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {4100, 3890, 3859, 209} \begin {gather*} \frac {5 \sqrt {a} (7 A+8 B) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{64 d}+\frac {5 a (7 A+8 B) \sin (c+d x)}{64 d \sqrt {a \sec (c+d x)+a}}+\frac {a (7 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{24 d \sqrt {a \sec (c+d x)+a}}+\frac {5 a (7 A+8 B) \sin (c+d x) \cos (c+d x)}{96 d \sqrt {a \sec (c+d x)+a}}+\frac {a A \sin (c+d x) \cos ^3(c+d x)}{4 d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(5*Sqrt[a]*(7*A + 8*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(64*d) + (5*a*(7*A + 8*B)*Sin[
c + d*x])/(64*d*Sqrt[a + a*Sec[c + d*x]]) + (5*a*(7*A + 8*B)*Cos[c + d*x]*Sin[c + d*x])/(96*d*Sqrt[a + a*Sec[c
 + d*x]]) + (a*(7*A + 8*B)*Cos[c + d*x]^2*Sin[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (a*A*Cos[c + d*x]^3*
Sin[c + d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} (7 A+8 B) \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (7 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{48} (5 (7 A+8 B)) \int \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {5 a (7 A+8 B) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (7 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{64} (5 (7 A+8 B)) \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {5 a (7 A+8 B) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {5 a (7 A+8 B) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (7 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{128} (5 (7 A+8 B)) \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {5 a (7 A+8 B) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {5 a (7 A+8 B) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (7 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {(5 a (7 A+8 B)) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}\\ &=\frac {5 \sqrt {a} (7 A+8 B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {5 a (7 A+8 B) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {5 a (7 A+8 B) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a (7 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.17, size = 70, normalized size = 0.34 \begin {gather*} \frac {2 \left (B \, _2F_1\left (\frac {1}{2},4;\frac {3}{2};1-\sec (c+d x)\right )+A \, _2F_1\left (\frac {1}{2},5;\frac {3}{2};1-\sec (c+d x)\right )\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*(B*Hypergeometric2F1[1/2, 4, 3/2, 1 - Sec[c + d*x]] + A*Hypergeometric2F1[1/2, 5, 3/2, 1 - Sec[c + d*x]])*S
qrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(761\) vs. \(2(179)=358\).
time = 5.83, size = 762, normalized size = 3.75

method result size
default \(\frac {\left (105 A \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+120 B \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+315 A \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+360 B \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+315 A \sqrt {2}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+360 B \sqrt {2}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+105 A \sqrt {2}\, \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+120 B \sqrt {2}\, \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )-768 A \left (\cos ^{8}\left (d x +c \right )\right )-128 A \left (\cos ^{7}\left (d x +c \right )\right )-1024 B \left (\cos ^{7}\left (d x +c \right )\right )-224 A \left (\cos ^{6}\left (d x +c \right )\right )-256 B \left (\cos ^{6}\left (d x +c \right )\right )-560 A \left (\cos ^{5}\left (d x +c \right )\right )-640 B \left (\cos ^{5}\left (d x +c \right )\right )+1680 A \left (\cos ^{4}\left (d x +c \right )\right )+1920 B \left (\cos ^{4}\left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{3072 d \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )}\) \(762\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/3072/d*(105*A*2^(1/2)*cos(d*x+c)^3*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+120*B*2^(1/2)*cos(d*x+c)^3*sin(d*x+c)*(-2*cos(d*x+c)/(1
+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+315*A*2^(1
/2)*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+360*B*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*
arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+315*A*2^(1/2)*cos(d*x+c)*sin(d
*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x
+c)*2^(1/2))+360*B*2^(1/2)*cos(d*x+c)*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+105*A*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arc
tanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)+120*B*2^(1/2)*(-2*cos(
d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*s
in(d*x+c)-768*A*cos(d*x+c)^8-128*A*cos(d*x+c)^7-1024*B*cos(d*x+c)^7-224*A*cos(d*x+c)^6-256*B*cos(d*x+c)^6-560*
A*cos(d*x+c)^5-640*B*cos(d*x+c)^5+1680*A*cos(d*x+c)^4+1920*B*cos(d*x+c)^4)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)
/cos(d*x+c)^3/sin(d*x+c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 8561 vs. \(2 (179) = 358\).
time = 1.03, size = 8561, normalized size = 42.17 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/768*(8*(4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*
d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*ar
ctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d
*x + 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2
/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*sin(1/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*
cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 15*sqrt(a)*(arctan2(-(
cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^
2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(
3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/
3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (
cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^
2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/
3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) +
1) - arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1
/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2
*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3
*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*
x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2
*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3
*c))) + 1))) - 1) - arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*
x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arc
tan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
 + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + 1) + arct
an2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin
(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1)))*B - (2*(cos(1/2*arctan2(sin(
4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan
2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(3/4)*((36*(sin(4*d*x + 4*c)^3 + (cos(4*d*x + 4*c)^2 - 2*cos(4*d*x
 + 4*c) + 1)*sin(4*d*x + 4*c))*cos(1/2*arctan2(...

________________________________________________________________________________________

Fricas [A]
time = 3.45, size = 380, normalized size = 1.87 \begin {gather*} \left [\frac {15 \, {\left ({\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right ) + 7 \, A + 8 \, B\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (48 \, A \cos \left (d x + c\right )^{4} + 8 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{3} + 10 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{2} + 15 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{384 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {15 \, {\left ({\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right ) + 7 \, A + 8 \, B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (48 \, A \cos \left (d x + c\right )^{4} + 8 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{3} + 10 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )^{2} + 15 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/384*(15*((7*A + 8*B)*cos(d*x + c) + 7*A + 8*B)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(48*A*cos(d*
x + c)^4 + 8*(7*A + 8*B)*cos(d*x + c)^3 + 10*(7*A + 8*B)*cos(d*x + c)^2 + 15*(7*A + 8*B)*cos(d*x + c))*sqrt((a
*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/192*(15*((7*A + 8*B)*cos(d*x + c) + 7*
A + 8*B)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (48*A*c
os(d*x + c)^4 + 8*(7*A + 8*B)*cos(d*x + c)^3 + 10*(7*A + 8*B)*cos(d*x + c)^2 + 15*(7*A + 8*B)*cos(d*x + c))*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 1080 vs. \(2 (179) = 358\).
time = 1.86, size = 1080, normalized size = 5.32 \begin {gather*} -\frac {15 \, {\left (7 \, A \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 8 \, B \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right ) - 15 \, {\left (7 \, A \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 8 \, B \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right ) - \frac {4 \, \sqrt {2} {\left (279 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{14} A \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 504 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{14} B \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 285 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{12} A \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 5976 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{12} B \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 4605 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} A \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 31320 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} B \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 37281 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} A \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 90168 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} B \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 35643 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} A \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 66024 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} B \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 9175 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} A \sqrt {-a} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 16904 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} B \sqrt {-a} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 1311 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A \sqrt {-a} a^{7} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 1992 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} B \sqrt {-a} a^{7} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 43 \, A \sqrt {-a} a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 104 \, B \sqrt {-a} a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{4}}}{384 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

-1/384*(15*(7*A*sqrt(-a)*sgn(cos(d*x + c)) + 8*B*sqrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 15*(7*A*sqrt(-a)*sgn(cos(d*x + c)) + 8*
B*sqrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
+ a*(2*sqrt(2) - 3))) - 4*sqrt(2)*(279*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^1
4*A*sqrt(-a)*a*sgn(cos(d*x + c)) - 504*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^1
4*B*sqrt(-a)*a*sgn(cos(d*x + c)) + 285*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^1
2*A*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 5976*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^12*B*sqrt(-a)*a^2*sgn(cos(d*x + c)) - 4605*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
 a))^10*A*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 31320*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)
^2 + a))^10*B*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 37281*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/
2*c)^2 + a))^8*A*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 90168*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x +
 1/2*c)^2 + a))^8*B*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 35643*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*
x + 1/2*c)^2 + a))^6*A*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 66024*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2
*d*x + 1/2*c)^2 + a))^6*B*sqrt(-a)*a^5*sgn(cos(d*x + c)) + 9175*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1
/2*d*x + 1/2*c)^2 + a))^4*A*sqrt(-a)*a^6*sgn(cos(d*x + c)) + 16904*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*ta
n(1/2*d*x + 1/2*c)^2 + a))^4*B*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 1311*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*
tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a)*a^7*sgn(cos(d*x + c)) - 1992*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-
a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*sqrt(-a)*a^7*sgn(cos(d*x + c)) + 43*A*sqrt(-a)*a^8*sgn(cos(d*x + c)) + 104*
B*sqrt(-a)*a^8*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6
*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^4)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\cos \left (c+d\,x\right )}^4\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^4*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________